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LSM resolution? 

-  Scale of interest for outputs:  

 local/regional? daily/seasonnal ?  

 depend of the modeling objectives (hydrology, agronomy, climatic, … 

-  Characteristic scales of processes ? 

•  Forcing processes: space-time intermittency of convective rainfall at 
small scales 

•   Surface processes: small-scale endoreism, strong non-linearity  
 

 

  <hourly, ~km resolution is needed to fully resolve surface processes  in the 
Sahel (eg., Vischel & Lebel, JH-2007) 

   HR-raingauge networks still needed despite loose space-sampling 
 
 

  " How to best use point rainfall data to drive land surface 
models in the Sahel ?  



kriging 

Variation in annual rainfield with interpolation scheme 

km²-distribut. of annual rainfall 
-------  kriging 
-------  thiessen 

Thiessen 
Amma-Catch Niger (ACN) dense 

network 

==>    Need  for : 

-  Assessing performances of standard 
interpolation schemes with respect to 
land surface applications in the Sahel 
context 

-  Evaluating benefits from newly 
proposed schemes for this region 



Materials & Methods 

 

Site :  ~3.103 km² of ACN mesosite (SW Niger)   (Cappelaere et al., JH-2009) 

Period :   2005 growing season (+ 2006 subsequent dry season) 

Application model :   SETHYS  land surface model  (Saux-Picart et al., JH-2009) 

        calibrated with ACN data 

Rainfall interpolation schemes : 

 1 - nearest neighbor (« Thiessen ») 

 2 - « standard » (eulerian) kriging 

 3 - dynamic (lagrangian) kriging  (Vischel et al., JHM-2012) 

 4 - stochastic (ensemble) rainfield modeling  (Vischel et al., JH-2009) 

Some specific questions 

  « General-purpose » deterministic method(s) ok?     which ? 

  Ensemble simulation necessary? To reflect uncertainty?  Other? 

  Or else could a single space-time rainfield do the job?  



Distributed land surface modelling 
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  Poster « Solignac et al. »  (9B11)  for model description 



(Vischel et al., JHM-2011) 

3 deterministic approaches of estimation of rainfields 

Standard kriging 

point 
rainfall 

time 

Nearest neighbor approach 

Transpose point to 1km² rainfall 

Dynamic kriging 

Thiessen: 

Interpolation time step by time 
step (variogram) 

Dynamic interpolation, superpose 
hyetograph in a virtual temporal 

space 

Better deterministic approach 



+ 1 conditioned stochastic approach of event rainfields 

Standard kriging 
a conditioned 

Stochastic simulation 

(Vischel et al., JH-2009) 

   50-member ensemble simulation (event resolution)   

   Dynamical kriging–based time disaggregation (event to 5-min) 

   simulation averages used as reference for comparisons here 

  Poster « Vischel et al. »  (9B9) 

Application 



2005 –aggregated rainfields  (start. June 15) 
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km-day intensity distribution of total rainfall 

dyn. 
krig. 

 Thiessen, stochastic : Maximise high/low intensities  

   Kriging, expected rainfall : Minimize high/low intensities 

  Great impacts on hydrological processes 

Conclusions 



Simulated hydrological variables 
Ensemble mean Expect. rainfall Std. kriging Dyn. kriging Thiessen 
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Rainfall Evaporation Transpiration 

Runoff Storage Drainage 

Cumulative mesoscale hydro. variables for ensemble & expected rainfall 

 Uncertainty propagation : % amplified for runoff & storage, 
dampened for evaporation  

 Bias generation with expect. rainfall: larger than uncertainty 
for runoff and evaporation 



Season / mesoscale hydro. variables for 4 methods 
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Same for turbulent fluxes in energy budget 

 



Bias from kriging methods vs. from expect. rainfall  (year x km² scale) 

 

storage 

transpiration evaporation 

runoff 

●   Std. kriging 
●   Dyn. kriging 
― Expect. rainf. 



Tentative conclusions 

-  Runoff most sensitive to rainfall uncertainty,   

 - 5-25% rain in 2005 over the mesosite 

 - compensates ~evenly between evaporation, transpiration, 
 deep storage 

-  Rainfall uncertainty generates biases on all hydrological variables 
with single rainfield methods (incl. expected rainfield) 

-  Improvement by dynamic kriging over standard kriging, coming close 
to expected rainfield 

-  Single stochastic rainfield better than any deterministic method (for 
mesoscale outputs) ? 



Simulated hydro variables 

Ensemble mean Expect. rainfall Std. kriging Dyn. kriging Thiessen 





Deviations 

Expect. rainfall Std. kriging Dyn. kriging Thiessen Ensemb. mean 
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Bias vs. Uncertainty  (season x km² scale) 

Expect. rainfall Std. kriging Dyn. kriging Thiessen 



The End 


