What is the influence of surface properties on wind erosion in semiarid regions? A modelling case study during AMMA

C. Bouet, B. Marticorena, G. Bergametti, J. L. Rajot, G. Cautenet, P. Formenti, and K. Desboeufs

Outline

- Scientific context
- · Problem
- · Description of the numerical experiment
 - Numerical tool
 - Sensitivity tests
- Results
- Conclusions

Scientific context

Scientific context

Wind erosion systematically occurs at the beginning of the rainy season

Scientific context

Wind erosion in the Sahel is associated to Mesoscale Convective Systems (MCS)

Problem

High surface wind speed = dust emission

Rainfall = dust washout

=> What is the impact of these systems on the mass balance of dust emitted in this area?

Numerical experiment

1. Simulated domain

- 2 nested grids in 2-way nesting centred on Niamey (13°N; 2°E)
- Grid 1 features: nx = ny = 101; $\Delta x = \Delta y = 25$ km
- Grid 2 features: nx = ny = 102; $\Delta x = \Delta y = 5$ km
- For the 2 grids: nz = 50 levels from the ground to 22 km agl, with 20 levels in the planetary boundary layer

2. Simulated period

The simulated period begins on 29 June 2006 on 00UTC, lasts 6 days and ends on 5 July 2006 on 00UTC

Numerical tool

Regional Atmospheric Modeling System (RAMS, Cotton et al. [2003]) coupled online with the Dust Production Model (DPM, Marticorena and Bergametti [1995], Laurent et al. [2008])

Remark: no initialisation of the dust concentration field

Numerical tool

Regional Atmospheric Modeling System (RAMS, Cotton et al. [2003]) coupled online with the Dust Production Model (DPM, Marticorena and Bergametti [1995], Laurent et al. [2008])

PROBLEM: no data on the surface properties below 16°N

Case no 1: the whole Sahel is erodible

Case n° 2: only sandy soils in the Sahel are erodible

Use of the Harmonized World Soil Database (HWSD)

Case n° 3: only bare surfaces (natural and agricultural) in the Sahel are erodible

Use of the Globcover database

Case n° 4: only sandy bare surfaces (natural and agricultural) in the Sahel are erodible

Use of the HWSD + Globcover databases

Results: meteo validation

The intensity of the event is fairly well reproduced

Results: meteo validation

The duration of the event is satisfactorily reproduced

Results: impact on dust emissions

On Grid 2 - from 01/07/2006 18UTC to 02/07/2006 06UTC

Results: impact on dust emissions

On Grid 2 - from 01/07/2006 18UTC to 02/07/2006 06UTC

Drastic decrease of the emitted dust mass when vegetation is accounted for

On Grid 2 - from 01/07/2006 18UTC to 02/07/2006 06UTC

	Case n°1	Case n°2	Case n°3	Case n°4
Emitted dust mass (Mg)	8.85×10 ³	6.25×10 ³	2.08×10 ³	1.46×10 ³
Dry deposit (Mg)	2.21×10 ³	1.58×10 ³	0.48×10 ³	0.35×10 ³
Wet deposit (Mg)	5.74×10 ³	4.45×10 ³	2.09×10 ³	3.51×10 ³
Dust mass balance (Mg)	0.90×10 ³	0.22×10 ³	-0.49×10 ³	-1.94×10 ³

On Grid 2 - from 01/07/2006 18UTC to 02/07/2006 06UTC

	Case n°1	Case n°2	Case n°3	Case n°4
Emitted dust mass (Mg)	8.85×10 ³	6.25×10 ³	2.08×10 ³	1.46×10 ³
Dry deposit (Mg)	2.21×10 ³	1.58×10 ³	0.48×10 ³	0.35×10 ³
Wet deposit (Mg)	5.74×10 ³	4.45×10 ³	2.09×10 ³	3.51×10 ³
Dust mass balance (Mg)	0.90×10 ³	0.22×10 ³	-0.49×10 ³	-1.94×10 ³

Drastic decrease of the emitted dust mass (up to 6 times less) when vegetation is accounted for

On Grid 2 - from 01/07/2006 18UTC to 02/07/2006 06UTC

	Case n°1	Case n°2	Case n°3	Case n°4
Emitted dust mass (Mg)	8.85×10 ³	6.25×10 ³	2.08×10 ³	1.46×10 ³
Dry deposit (Mg)	2.21×10 ³	1.58×10 ³	0.48×10 ³	0.35×10 ³
Wet deposit (Mg)	5.74×10 ³	4.45×10 ³	2.09×10 ³	3.51×10 ³
Dust mass balance (Mg)	0.90×10 ³	0.22×10 ³	-0.49×10 ³	-1.94×10 ³

Drastic decrease of the deposited dust mass as well when vegetation is accounted for

On Grid 2 - from 01/07/2006 18UTC to 02/07/2006 06UTC

	Case n°1	Case n°2	Case n°3	Case n°4
Emitted dust mass (Mg)	8.85×10 ³	6.25×10 ³	2.08×10 ³	1.46×10 ³
Dry deposit (Mg)	2.21×10 ³	1.58×10 ³	0.48×10 ³	0.35×10 ³
Wet deposit (Mg)	5.74×10 ³	4.45×10 ³	2.09×10 ³	3.51×10 ³
Dust mass balance (Mg)	0.90×10 ³	0.22×10 ³	-0.49×10 ³	-1.94×10 ³

Balance > 0

Balance < 0

(Emissions > Deposition)

(Emissions < Deposition)

Conclusions

Dust mass balance is very dependent on surface characteristics

Conclusions

Dust mass balance is very dependent on surface characteristics

⇒ Need to carefully account for Sahelian surface features to study dust emission in this region

Conclusions

Dust mass balance is very dependent on surface characteristics

⇒ Need to carefully account for Sahelian surface features to study dust emission in this region

In particular, a special attention must be paid to land use description

