Intra seasonal Variability of West African Monsoon: A precipitable Water perspective

Poan E. D., R. Roehrig, F. Couvreux and J.-P. Lafore

Centre National de Recherche Météorologique, Météo France, Toulouse

FromSultan and Janicot 2004

FromSultan and Janicot 2004 ???

FromSultan and Janicot 2004 ???

1968 rainfall over Sahel	Major progresses during the last decade in
Some questions still remain about:	
➢ Interactions between dynamics and convection within such Intra seasonal disturbances,	
≻ Variables which could link both dynamics and convection	
The potential of predictibility associated with these scales (Talk by R. Roehrig)	
• Water • Health	⁶ ³ ³ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹

Wavelet Analysis on 1968 Rainfall

Precipitable water:

$$PW = \frac{1}{g} \int_{ps}^{0} qdp$$

Deep convection is sensitive to both lower and high free tropospheric water vapor

Rainfall sharp increase is controlled by a threshold value of PW (over ocean)

➢ PW is less intermittent, has longer autocorrelation time than rainfall (or OLR).

> PW is a limiting factor for rainfall over the Sahel

PW as a good predictor of the monsoon onset: talk by Ousmane this morning

ERAI JJAS mean and Variance over 1989-2007

• Precipitable water:

$$PW = \frac{1}{g} \int_{ps}^{0} qdp$$

Deep convection is sensitive to both lower and high free tropospheric water vapor

≻Rainfall sharp increase is controlled by a threshold value of PW (over ocean)

≻PW is less intermittent, has longer autocorrelation time than rainfall (or OLR).

>PW is a limiting factor for rainfall over the Sahel

ERAI JJAS mean and Variance over 1989-2007

• Precipitable water:

$$PW = \frac{1}{g} \int_{ps}^{0} q dp$$

Deep convection is sensitive to both lower and high free tropospheric water vapor

≻Rainfall sharp increase is controlled by a threshold value of PW (over ocean)

≻PW is less intermittent, has longer autocorrelation time than rainfall (or OLR).

≻PW is a limiting factor for rainfall over the Sahel

Objective:

Analyse the synoptic variability over West Africa and relate it to that of precipitation

ERAI JJAS mean and Variance over 1989-2007

Outline

- 2. Synoptic variability of PW
- 3. Moisture Composite budget
- 4. Conclusion

2. Synoptic variability of PW: Illustration

2. Synoptic variability of PW: Illustration

2. Synoptic variability of PW: Composite of «wet events»

PW and 925 Wind

2. Synoptic variability of PW: Composite of «wet events»

✓ Vertical structures are consistent with those found for AEWs

 \checkmark The PW strong events are driven by a particular coupling between mid and low level circulation associated with AEW.

2. Synoptic variability of PW: link with Convection

GPCP-rainfall (black Contours),

NOAA-olr (colours),

2. Synoptic variability of PW: link with Convection

GPCP-rainfall (black Contours),

NOAA-olr (colours),

2. Synoptic variability of PW: link with Convection

GPCP-rainfall (black Contours),

NOAA-olr (colours),

 \rightarrow Vertical advection (A^{*}_z) is a precursor

 \rightarrow Horizontal advections (A^{*}_{y,z}) play a major role particularly at low levels after the trough

 \rightarrow Vertical advection (A^{*}_z) is a precursor

→ Horizontal advections $(A^*_{y,z})$ play a major role particularly at low levels after the trough

 \rightarrow Precipitation start near the max of PW tendency in the northerly flow

 \rightarrow Vertical advection (A^{*}_z) is a precursor

 \rightarrow Horizontal advections (A^{*}_{y,z}) play a major role particularly at low levels after the trough

 \rightarrow Precipitation start near the max of PW tendency in the northerly flow

 \rightarrow Small closure (CLSR)

4. Conclusion

- PW variability has been documented at different time scales: synoptic scales are dominant over the Western Sahel while longer periods scales dominate the Eastern part
- Composites analysis highlights a moist perspective of african easterly waves with westward propagative « wet » and « dry » signals.
- Such « events », frequent and strong, show a strong link with convective activity.
- The budget analysis gives insight into the PW signature of AEW: Importance of low-level advection
- PW indices as application to the synoptic weather monitoring : see our website at http://isv.sedoo.fr/

Other results (not shown):

A linear adiabatic approach of PW anomalies provides a realistic propagation speed of PW anomalies once generated.

Current work:

However the growing of these anomalies involves some diabatic processes which will be diagnosed in future work.

Adiabatic Linear approach of PW equation

$$\begin{aligned} \mathcal{J}_{\varphi} &= \overline{u} - \frac{1}{k\hat{q}^*} \left(\hat{A}_y \sin \phi_v + \hat{A}_z \sin \phi_w \right) \\ \mathcal{J}_{\varphi} &= \frac{1}{\hat{q}^*} \left(\hat{A}_y \cos \phi_v + \hat{A}_z \cos \phi_w \right) \end{aligned}$$

Adiabatic Linear approach of PW equation

Mean+composite at t0 Lat-Lev profile of Residual of THETA

 $U_{\varphi} = \overline{u} - \frac{1}{k\hat{a}^*} \left(\hat{A}_y \sin \phi_v + \hat{A}_z \sin \phi_w \right)$ $G_r = \frac{1}{\hat{a}^*} \left(\hat{A}_y \cos \phi_v + \hat{A}_z \cos \phi_w \right)$

Mean+composite at t0 Lat-Lev profile of Residual of Humidity

