Air – sea interaction in the Gulf of Guinea at intraseasonal timescales :

a quasi-biweekly oscillation in the eastern equatorial Atlantic

Gaëlle de Coëtlogon, Marion Leduc-Leballeur, Rémi Meynadier, Sophie Bastin (LATMOS-IPSL) Laurence Eymard, Serge Janicot, Alban Lazar (LOCEAN-IPSL) Moussa Diakhaté (LPAO-SF / LOCEAN)

AMMA conference, 2-6 July 2012, Toulouse

2000 – 2009

Reynolds SST (colors) QSCAT wind (black contours)

1°) wind drives SST :

- surface heat fluxes,

- oceanic dynamics.

2°) <u>SST drives surface wind :</u>

-SST gradient => SLP gradient (Lindzen and Nigam 1987),

-SST=> atmospheric boundary layer (ABL) dynamics (Sweet et al. 1981, Hayes et al. 1989, Wallace et al. 1989, Small et al. 2008, Chelton et al., etc.),

-a mix of both (Bryan et al. 2010, ...).

2000 - 2009

Reynolds SST (colors) QSCAT wind (black contours)

29	Definition of intraseasonal anomalies:
28	high-pass filtered (Lanczos), cutoff =
27	90 days
26	Seasonal = > 90 days
25	
24	
23	
22	
21	

=> equatorial SST cooling (due to northward oceanic horizontal advection + vertical dynamics, ~5-6 days).

2°) equatorial SST cooling / intensification of the front (further north) :

=> A) immediate MABL stabilization effect : equatorial weakening of southerlies / strengthening further north

=> equatorial SST cooling (due to northward oceanic horizontal advection + vertical dynamics, ~5-6 days).

2°) equatorial SST cooling / intensification of the front (further north) :

=> A) immediate MABL stabilization effect : equatorial weakening of southerlies / strengthening further north

Guinean coast (5°N) =

=> equatorial SST cooling (due to northward oceanic horizontal advection + vertical dynamics, ~5-6 days).

2°) equatorial SST cooling / intensification of the front (further north) :

=> A) immediate MABL stabilization effect : equatorial weakening of southerlies / strengthening further north

=> equatorial SST cooling (due to northward oceanic horizontal advection + vertical dynamics, ~5-6 days)

2°) equatorial SST cooling / intensification of the front (further north) :

=> B) delayed (~1-3 day) response of the SLP

Guinean coast (5°N)

=> equatorial SST cooling (due to northward oceanic horizontal advection + vertical dynamics, ~5-6 days)

2°) equatorial SST cooling / intensification of the front (further north) :

=> B) delayed (~1-3 day) response of the SLP

=> equatorial SST cooling (due to northward oceanic horizontal advection + vertical dynamics, ~5-6 days).

2°) equatorial SST cooling / intensification of the front (further north) :

=> B) delayed (~1-3 day) response of the SLP

BWEO = a coupled mechanism ?

Lagged linear regression : May-June 2000 - 2009

Spatially high-pass filtered SST (10°W-0 / 0.5°S-1°N)

Correlation ~= 0.7 (0.44 without spatial filter)

(~0.5°C <=> ~0.5 m/s)

Lagged linear regression on the NCTI, 2000 – 2009, 10°W-0 :

QSCAT wind anomaly (color) Reynolds SST anomaly (black contours)

(~ -0.5°C <=> ~ -0.5 m/s)

Lagged linear regression on the NCTI, 2000 – 2009, 10°W-0 :

10-m wind anomaly (color) SST anomaly (black contours)

(~ -0.5°C <=> ~ -0.2 m/s)

Lagged linear regression on the NCTI, 2000 – 2009, 10°W-0 :

10-m wind anomaly (color) SST anomaly (black contours)

(~ -0.5°C <=> ~ -0.4 m/s)

- better resolution ? (0.5° vs 0.75°...)
- atmosphere GCM coupled to an ocean GCM => stronger feedback!

NCEP CFSR reanalyses 10°W-0, 2000-2009

July - August

=> good confidence for CFSR, May-June

Lagged linear regression on the NCTI, CFSR reanalyses, 2000 – 2009, 10°W-0 :

SLP anomaly (colors, Pa) SST anomaly (black contours, °C)

dSLP/dY anomaly (colors, Pa / 111 km) dSST/dY anomaly (black contours, °C / 111 km)

An estimation of the bi-weekly importance in intraseasonal timeseries: rms(10 to 20-day) / rms(<90-day) in MJJA, 2000-2009

An estimation of the bi-weekly importance in intraseasonal timeseries: rms(10 to 20-day) / rms(<90-day) in MJJA, 2000-2009

QSCAT wind

I – intraseasonal variability « fueling » from larger scales atmospheric circulation II - active air-sea coupling => enhances quasi-biweekly variability (by about 50%...) III – « radiation » over the whole GG, through pressure gradient anomalies

Reynolds SST

I) reanalyses made with coupled model (as NCEP CFSR) clearly improve the QBWEO representation => importance of the coupling in studies with regional - or global – models

II) important control of this bi-weekly variability on the seasonal evolution of the rainfall, through southerlies fluctuations between the Equator and the coas (see Leduc-Leballeur et al. 2012, and Marion's talk tomorrow...!)

