Investigation of ALMIP zone total water storage variations using GRACE

Laurent Longuevergne ¹ ,Guillaume Favreau

Bridget Scanlon³, Yahaya Nazoumou⁴ Himanshu Save⁵, Aaron Boone⁶

- 1. CNRS Univ. Rennes 1, France
- 2. IRD Univ. Montpellier 2, Montpellier, France
- 3. BEG Jackson School of Geosciences, Austin,
- 4. Univ. Niamey, Niamey, Niger
- 5. CSR, Univ. of Texas at Austin, Austin, USA
- 6. CNRM-GAME, France

Context

GRACE satellite, the first satellite of its kind

Measures time-variable gravity variations at spatial scales above 333 km with 10-day to monthly sampling

Gravity variations are interpreted as total water storage variations after correction of atmospheric and oceanic contributions (i.e. Surface water + soil moisture + groundwater storages)

Not a regular remote sensing instrument Support of GRACE measurements are not grids, even if it can be provided as grids

Previous works over the AMMA region

Grippa et al. 2012 : comparison between GRACE and ALMIP models

Points out the ability of GRACE to monitor water storage variations Highlights the importance of slow reservoir & ET modeling

Difficulty in using GRACE

GRACE provide a spatially filtered image of reality

Amplitude of seasonal water storage variations

Modeled by GLDAS-NOAH hydro-meteorological model

Same map, considering only large-scale variations seen by GRACE

- 2 ways to use GRACE
 - 1. Continent-scale studies, models are filtered as GRACE
 - 2. Space-limited areas (e.g. basin or region), GRACE requires corrections

Difficulty in using GRACE

GRACE provide a spatially filtered image of reality

Amplitude of seasonal water storage variations

Modeled by GLDAS-NOAH hydro-meteorological model

Same map, considering only large-scale variations seen by GRACE

- 2 ways to use GRACE
 - 1. Continent-scale studies, models are filtered as GRACE
 - 2. Space-limited areas (e.g. basin or region), GRACE requires corrections

Objectives of the study

• 1. Compare GRACE and ALMIP models

- ALMIP models first turned to GRACE resolution for an optimal use of information contained in GRACE data
- Requires first nesting of ALMIP models (limited extend) into a global model GLDAS-NOAH to avoid border effects
- GRACE solutions : CSR, GRGS and new regularized CSR

- 2. Interpret differences between GRACE and models
 - 1. GRACE errors -> estimated in the ocean
 - 2. LSM errors -> comparison among models
 - 3. Unmodeled contributions -> groundwater contribution

Nesting ALMIP models into GLDAS-NOAH

-10

Example of CLSM model

• ALMIP model comparison: residuals in GRACE GRGS - MODEL

• ALMIP model comparison: residuals in GRACE GRGS - MODEL

• ALMIP model comparison: residuals in GRACE GRGS - MODEL

	Residual	Residual
	variability	Seasonal
	•	
	[mm]	cycle [mm]
CLSM	48	28
HTESSEL	40	25
ISBA	41	28
ISBA_DIF	47	27
JULES	40	26
NOAH	40	28
ORCHIDEE	40	26
ORCHIDEE		
WILT	40	25
SETHYS	45	27
SSIB1	41	29
SWAP	41	30
GRACE error	30	10

Long-term variations : GRACE minus models

Long-term variations : GRACE minus models

The Continental Terminal aquifer

Studied since 1990s International AMMA project

Favreau et al., 2009

GW level rising

GW level rising, no link to climate

Favreau et al., 2002, GW

GW level rising, related to land use changes

GRACE monitoring of the CT region

Long-term variation: 18 ± 10 mm/year

GRACE regularized CSRGRACE GRGSNOAH LSM

Interannual water accumulation on CT

• Long-term evolution of GRACE (3 solutions) minus LSM (17 LSM)

Synthesis on CT aquifer

Groundwater results

GRACE results

Area: 10 000 km²

Trend: +23 mm/yr

Area: 150 000 km²

Trend: +18 mm/yr

GRACE can be used to regionalize trends

Conclusions

• 1. Comparison GRACE – ALMIP models

- Large variability among models as compared to GRACE
- Water towers concentrate most model errors
- A good model for seasonal variations is not necessarily a good model for describing long-term variations

• 2. Extraction of groundwater contribution

- Over the Continental Aquifer System, long-term groundwater level rise ~ 18 mm/year
- Spatially, the GW level rise extends beyond the CT aquifer according to GRACE

Thanks for attention

Amplitude of seasonal, cycle GRACE and models

Example of CLSM model

GRACE noise level ~10 mm, white color is non-significative