

The impact of soil moisture and convectivelygenerated waves on the initiation of a West African mesoscale convective system

C. E. Birch, A. O'Leary, D. J. Parker, J. H. Marsham, C. M. Taylor, P. Harris, G. Lister

Mesoscale convective systems

26th Aug 2010, MSG Dundee receiving station

- A mesoscale convective system (MSC) is a large complex of thunderstorms that becomes organised
- These systems provide most of the Sahel's rainfall
- Precursor for Atlantic hurricanes

Case Study

15.5N

Mesoscale convective system case

Observed during the African Monsoon

Multidisciplinary Analysis (AMMA) field

study on 31st July 2006

campaign

Taylor et al. (2010) 14:15 0.5E 1E 1.5E 2E

New storm forms on dry soil, upwind of a soil moisture gradient

2.5E

Case Study

Met Office Unified Model (MetUM)

- Met Office Unified Model global-12km-4km
- 4km explicit convection
- 12Z, 30th July 2006 with ECMWF analysis produced best results

Soil moisture and initiation

Soil moisture and initiation

Rainfall rates

Hovmöller plots averaged between 11 and 18°N

Synoptic-scale circulation

Development without the parent storm

Model initialised 12Z, 31st July (24 hours later)

- Storm is still reproduced but it develops in a different place and too late in the day
- Large-scale circulation (convergence zone) most important

Summary

- 4 km nest of the model reproduced key aspects of the observed case study
- Daughter storm initiates on dry soil in a region of synopticscale low-level convergence
- Two pronounced gravity waves were emitted from the parent storm in the model. The arrival of the second wave coincided with the initiation of deep convection in the daughter storm
- Three key ingredients for successful MCS forecasting:
 - Synoptic-scale dynamics = storm/no storm
 - 2. Soil moisture = accuracy of initiation location
 - Gravity wave = accuracy of timing

Thank you
C.E.Birch@leeds.ac.uk

Cold pool

 Waves don't have a significant influence on CAPE but they reduce CIN

Cold pool

- Model diagnostics at 11Z
- Cold pool at 13.5°N

Land-atmosphere interaction

Moist convection needs heat and moisture

Land-atmosphere interaction

- Taylor and Lebel 1997:
 - Empirically, rains more on wet soil at the mesoscale

A positive feedback

- Taylor and Ellis (2006):
 - Empirical composite of many cases, over wet areas there is:
 - (i) Reduced cold cloud during late afternoon/early evening
 - (ii) Almost no initiation over wet patches

A negative feedback!

Land-atmosphere interaction

- Current consensus new convection occurs over dry soil, just upwind of sharp gradients in soil moisture
- But mature systems rain more over wet soil

Wave-fronts

- The waves extends over the entire troposphere
- n=1 mode travels the quickest
- n=2 and 3 are slower
- Important over the tropics lots of deep convection and influence of the Coriolis force is lower
- A surprisingly small number of model studies of observed cases (non-idealised), none over west Africa

08Z 31st

displacement of air by wave, n=2

Upward and downward displacement of air by wave, n=2

- W1 travels towards the northwest at ~15.7 m s⁻¹
- W2 travels towards the northwest at ~ 20.2 m s⁻¹
- W1 sets up environment for W2
- Second example of initiation by waves

Wave speed calculation

- The waves appear to be wave-fronts rather than bores
- Assuming that the tropopause acts as a rigid lid, the vertical wavelength (λ_{z}) of the wave can be estimated using the equation:

$$\lambda_z = \frac{n\pi c}{N}$$

where:

n is the wave mode = 2 c is the phase speed = 17.5 m s⁻¹ N is the Brünt-Väisälä frequency = 0.01 s⁻¹

Gives a vertical wavelength of $\lambda_z \approx 11$ km, which is approximately equal to the depth of the troposphere in this case.

Land-surface interaction

Hotter but drier

Wetter but cooler

