Impact of the air-sea coupling in the Gulf of Guinea on the water cycle in boreal spring

R. Meynadier, G. De Coetlogon, L. Eymard, M. Leduc-Leballeur, S. Bastin, S. Janicot, O. Bock and C. Flamant

Ocean-Atmosphere Coupling in the Gulf of Guinea (GG)

Daily Linear Regressions on SST - index between May and June 2000-2009

Impact of air-sea interaction on the water cycle seen by satellite data and CFSR reanalysis

Study of air-sea interactions with WRF regional model and its impact on water cycle

- WRF model description -

WRF-ARW Version 3.3.1 non-hydrostatic 15Avril-15July 2006 25kmx25km 35 vertical levels ERA-Interim initial and lateral forcing (6h) SST Reynolds forcing (24h)

Convection	PBL	Radiation	Microphysics	Surface layer	Land surface	SST forcing	domain
Kain-Fritsch (KF)	Yonsei Universite (YSU)	RRTM / Dudhia	Morrison (2 moments)	Monin- Obukhov MO	NOAH	ERAI	1
KF	YSU	Dudhia	Morrison	MO	NOAH	ERAI	2
KF	YSU	Dudhia	Morrison	МО	NOAH	Reynolds	1
KF	Mellor Yamada Janjic (MYJ)	Dudhia	Morrison	MO	NOAH	Reynolds	1
KF	(MYJ)	RTTMG	Morrison	МО	NOAH	Reynolds	1
KF (moisture advection trigger)	Mellor Yamada Janjic (MYJ)	Dudhia	Morrison	MO	NOAH	Reynolds	1
Grell 3-D (GR3D)	Mellor Yamada Janjic(MYJ)	Dudhia	Morrison	МО	NOAH	Reynolds	1

WRF simulations results at intra-seasonal scales and impact of air-sea interactions on water cycle

Time-latitude diagram averaged between 10°W and 0°E for May-July 2006

WRF experience design: quantify influence of SST fluctuations on the water cycle terms?

SST filtered using a low-pass filter with a 1/90 day cut-off:

- to keep the seasonal cycle and remove intra-seasonal variability LF exp
- to keep the seasonal cycle and amplify (x3) intra-seasonal variability HF exp

WRF SST experience: impact on air-sea coupling

Spatially high-pass filtered wind speed (m/s) (shaded) and SST (°K) (contour) - May-June average

Temporal correlation (90 days) between high-pass filtered wind speed and SST

WRF SST-experience: impact on water cycle

WRF SST-experience: impact on water cycle

WRF SST-experience: impact on water cycle

Low-level moisture flux convergence cause or consequence of deep convection?

Conclusion / Perspective

- Strong coupling between SST and surface winds in the GG seen by satellite observations and CFSR reanalysis
- It has strong influence on the functioning of the Guinean rainfall water budget (onset, day-to-day variability, demise)
- WRF forced simulations fairly reproduces SST/surface winds couplings (but weaker) and its influence on the water cycle but at 25km resolution the impact of parameterizations is proved to be important (excessive rainfall in the ITCZ).
 - KF(moist adv trigger) or GR3D + MYJ + Dudhia found to better represent the air/sea coupling and rainfall volume
- Preliminary study on WRF Intra-seasonal SST fluctuations influence on the water cycle:
 - rainfall amounts and low-level moisture flux convergence are strongly modulated by the amplitude of SST fluctuations

Perspective :

- -WRF simulations 2000-2009 to further analyse air-sea interactions on water budget
- Next step WRF-NEMO set up to fully characterize air-sea interactions