Weather index-based insurance in a cash crop regulated sector: an ex ante evaluation for cotton growers in Cameroon

A. Leblois, P. Quirion and B. Sultan

July, 3rd 2012

Table of contents

Introduction: context & data

Cameroonese cotton sector Weather data sources

Methodology

Weather indices
Insurance contract optimization
Model calibration

Results

Risk aversion Importance of sowing date Agro-ecological zones International price insurance

Conclusions

Is weather index-based insurance (WII) worth for cotton growers in Cameroon ?

What are the best indices and sources (rainfall, T°, remote sensing) for cotton cultivation in order to limit basis risk?

Is weather index-based insurance (WII) worth for cotton growers in Cameroon ?

- What are the best indices and sources (rainfall, T°, remote sensing) for cotton cultivation in order to limit basis risk?
- How should the supply scheme be implemented? Are agro-ecological zones (AEZ) really playing a role in the meteo/yield relationship?

Is weather index-based insurance (WII) worth for cotton growers in Cameroon ?

- What are the best indices and sources (rainfall, T°, remote sensing) for cotton cultivation in order to limit basis risk?
- How should the supply scheme be implemented? Are agro-ecological zones (AEZ) really playing a role in the meteo/yield relationship?
- ▶ What is the gain of such insurance compared to a perfect (basis risk free) area-yield insurance? How much prices affects income variation, (compared to the weather)?

Francophone West African cotton sectors' specificities: the case of input supply scheme

Mali and Cameroun are the 2 cotton companies that still are **parastatals**, acting as **monopsonies**.

Francophone West African cotton sectors' specificities: the case of input supply scheme

Mali and Cameroun are the 2 cotton companies that still are **parastatals**, acting as **monopsonies**.

- Inputs (fert. & pest.) are supplied on credit (in kind) to producers groups (PG's) and cotton harvest price announced before sowing.
- ▶ ⇒ Part of the risk (intraseasonal price variations) is thus taken by the company.

Francophone West African cotton sectors' specificities: the case of input supply scheme

Mali and Cameroun are the 2 cotton companies that still are **parastatals**, acting as **monopsonies**.

- Inputs (fert. & pest.) are supplied on credit (in kind) to producers groups (PG's) and cotton harvest price announced before sowing.
- ▶ ⇒ Part of the risk (intraseasonal price variations) is thus taken by the company.
- Heavy losses (> growing period investments) or side-selling are also significant risks.

Nationaly regulated sector ⇒ area-yield or WII easier to implement (on going experiment in BF).

- Nationaly regulated sector ⇒ area-yield or WII easier to implement (on going experiment in BF).
- Yields highly dependant on costly input use ⇒ potential bundle with input credit.

- Nationaly regulated sector ⇒ area-yield or WII easier to implement (on going experiment in BF).
- Yields highly dependant on costly input use ⇒ potential bundle with input credit.
- Cash crop: high (international) price variations ⇒ impact on growers' income and livelihood.

- Nationaly regulated sector ⇒ area-yield or WII easier to implement (on going experiment in BF).
- Yields highly dependant on costly input use ⇒ potential bundle with input credit.
- Cash crop: high (international) price variations ⇒ impact on growers' income and livelihood.
- ▶ Cotton zone in Cameroon = large heterogenous area ⇒ potential balancing out

- Nationaly regulated sector ⇒ area-yield or WII easier to implement (on going experiment in BF).
- Yields highly dependant on costly input use ⇒ potential bundle with input credit.
- Cash crop: high (international) price variations ⇒ impact on growers' income and livelihood.
- ▶ Cotton zone in Cameroon = large heterogenous area ⇒ potential balancing out

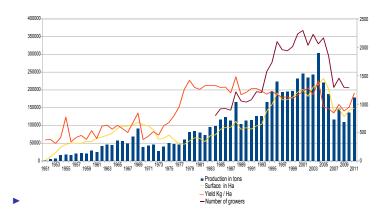


Figure: Evolution of the Cameroonese cotton sector 1951-2010.

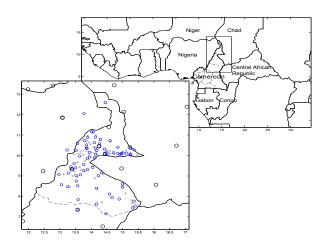


Figure: Meteorological (large circles) and rainfall stations (blue circles) network provide daily rainfall data and remote sensing vegetation indicator (NDVI) matched to administrative sectors (grey dots) yields. Sources: SODECOTON and GHCN

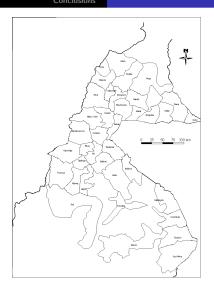


Figure: Sodecoton admistrative cutting: the sectors.

▶ Daily rainfall allow us to consider cumulative rainfall (CR) over the season and to simulate a growing cycle schedule (⇒ length of the rainy season, growing phases CR...)

- ▶ Daily rainfall allow us to consider cumulative rainfall (CR) over the season and to simulate a growing cycle schedule (⇒ length of the rainy season, growing phases CR...)
- Observations of actual sowing and emergence dates allow us to compare simulated and observed sowing dates, and capture the effect of early rainfall that are crutial to the cotton tree development.

- ▶ Daily rainfall allow us to consider cumulative rainfall (CR) over the season and to simulate a growing cycle schedule (⇒ length of the rainy season, growing phases CR...)
- Observations of actual sowing and emergence dates allow us to compare simulated and observed sowing dates, and capture the effect of early rainfall that are crutial to the cotton tree development.
- Comparison of rainfall and remote sensing indices

- ▶ Daily rainfall allow us to consider cumulative rainfall (CR) over the season and to simulate a growing cycle schedule (⇒ length of the rainy season, growing phases CR...)
- Observations of actual sowing and emergence dates allow us to compare simulated and observed sowing dates, and capture the effect of early rainfall that are crutial to the cotton tree development.
- Comparison of rainfall and remote sensing indices
- ► **Temperature** is the major channel identified for climate change impacts (reproduction issues, growing cycle reduction).

Hypothesis

3 (EUT) objective functions:

$$U_{ssd}(\tilde{y}) = E(\tilde{y}) - \phi \times \sum_{i=1}^{N} \left(\max \left(E(y) - y_i, 0 \right) \right), \qquad \tilde{y} = \{y_1, ..., y_N\} \quad (1)$$

$$U_{crra}(\tilde{y}) = \frac{(y_i + W_i)^{(1-\rho)}}{(1-\rho)}, \qquad \tilde{y} = \{y_1, ..., y_N\}$$
 (2)

$$U_{cara}(\tilde{y}) = 1 - \exp\left(-\psi \times (y_i + W_i)\right), \qquad \qquad \tilde{y} = \{y_1, ..., y_N\}$$
 (3)

The insurance contract parameters are optimized maximizing utility of insured income:

$$Y_{ins} = Y - P(S^*, M^*, \lambda^*, x) + I(S^*, M^*, \lambda^*, x)$$
(4)

The premium includes a loading factor: 10% of total indemnification for the insurer

(in order to cover administration and risk costs) and a transaction cost for each indemnification (1% of average yield).

Initial wealth

► Use Sodecoton surveys (3 rounds)

Table: cotton growing income as a share of on-farm income of cotton producers during the 2003-2010 period

Cotton share of income (%)	Mean	Std. Dev.	Min.	Max.	N
2003	46.5	21.6	0	100	1562
2006	38.3	20.5	0	100	943
2008*	57	30.3	0	100	939
2009*	35.1	23.9	0	100	1111
2010	24.9	25	0	100	1449

Source: Sodecoton's surveys and author's calculations.

Risk aversion

▶ Use a field survey (Nov-Dec, 2011): implement lotteries.

Table: Lotteries options

Number of BB (prob. Difference of risk aversion (CRRA) of agents of a bad outcome) RB BB RB BB expected gain switching from I to II No risky option chosen > 1.7681 5/10 50 350 150 250 0 1.1643.1.7681 250 0.7236,1.1643 6/10 50 350 150 20 7/10 50 350 150 250 40 [0.3512,0.7236] 8/10 50 350 150 250 60 [0,0.3512] 9/10 50 350 150 250 80 < 0

Risk aversion parameter (CRRA)

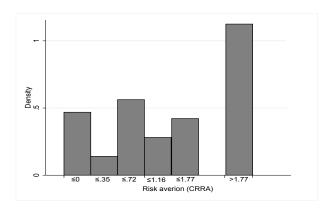


Figure: Distribution of risk aversion parameter density.

	SSD				CRRA			CARA		
	$\phi = 1$	$\phi = 2$	$\phi = 3$	$\rho = 1$	$\rho = 2$	$\rho = 3$	$\psi = 1/W$	$\psi = 2/W$	$\psi = 3/W$	N
$Length_{sim}$	13.18%	13.18%	13.18%	.00%	.00%	.00%	.00%	.00%	.00%	479
$Length_{obs}$	28.79%	31.19%	31.75%	.00%	12.14%	15.85%	17.14%	20.03%	19.92%	247
Sowing date _{obs}	33.93%	33.93%	33.93%	.00%	20.89%	21.20%	22.94%	22.85%	22.39%	247
Annual cumulative rainfall (CR)	7.15%	7.15%	8.47%	.00%	.00%	.00%	.00%	.00%	.00%	479
CR_{sim}	1.16%	5.44%	5.44%	.00%	.72%	.66%	.83%	.66%	.47%	479
$CR_{sim~gdd}$	2.09%	5.85%	5.85%	.00%	1.17%	1.24%	1.39%	1.03%	.71%	479
CR_{obs}	18.70%	21.31%	21.31%	.00%	1.45%	1.38%	1.53%	5.02%	5.27%	247
Sum NDVI	12.64%	13.34%	13.34%	.00%	.00%	.00%	.00%	.00%	.00%	479
% of area where cotton emerged at June the 30	22.20%	22.20%	22.20%	13.67%	23.80%	23.74%	24.29%	26.29%	28.74%	252

Figure: Share of the maximum risk premium reduction among different indices and samples (1991-2004).

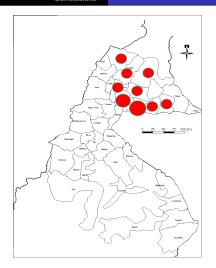


Figure: Indemnification (red bubbles) of a contract against late sowing.

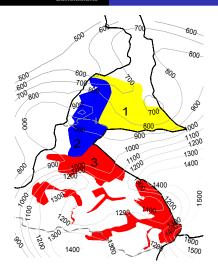


Figure: Agroecological zones (North West: 1, North East: 2 and South: 3) and isohyets (in mm).

Table: Agro-ecological areas summary statistics

Variable	Mean	Std. Dev.	Min.	Max.	N
North-East					
Yield	959.459	243.07	352	2241	302
Annual cumulative rainfall (mm)	803.37	158.587	412	1244	302
CR _{sim}	717.61	151.848	355.9	1128.8	302
CR _{sim gdd}	659.908	144.493	319	1044.1	302
Sum NDVI	5222.26	479.148	3914.5	6546.17	248
Length _{obs}	111.185	13.158	84	141	146
CR _{obs}	612.321	128.466	299	973	146
North-West					
Yield	1225.828	290.505	594	1981	299
Annual cumulative rainfall (mm)	946.338	164.52	540	1575	299
CR _{sim}	817.08	158.386	340	1247	299
CR _{sim gdd}	733.089	148.195	267	1087	299
Sum NDVI	6226.557	842.911	4311.75	8489.08	237
Length _{obs}	118.773	15.276	80	173	172
CR _{obs}	716.437	165.82	279	1114	172
South					
Yield	1291.348	319.317	593	2352	248
Annual cumulative rainfall (mm)	1131.375	233.86	541	1790	248
CR _{sim}	959.296	208.322	340	1538	248
CR _{sim gdd}	846.451	194.217	267	1419	248
Sum NDVI	8267.915	1568.815	5953.41	12817.25	190
Length _{obs}	128.27	13.235	96	161	148
CR _{obs}	915.504	222.21	319	1439	148

Producer prices

		SSD			CRRA		CARA			
	$\phi = 1$	$\phi = 2$	$\phi = 3$	$\rho = 1$	$\rho = 2$	$\rho = 3$	$\psi = 1/W$	$\psi = 2/W$	$\psi = 3/W$	N
Calibrated on the first AEZ sample (AEZ=	1, North)									_
$CR_{sim~gdd}$	7.59%	9.92%	9.92%	.00%	1.48%	2.09%	.00%	1.59%	2.40%	170
CR_{obs}	23.70%	23.37%	23.37%	.00%	2.11%	2.12%	.00%	2.37%	2.39%	86
Sum NDVI	6.22%	6.14%	6.14%	.00%	4.97%	4.88%	.00%	5.16%	5.11%	174
CR Phase4 _{sim qdd}	17.33%	21.29%	21.42%	.00%	5.63%	5.44%	.00%	5.78%	5.63%	174
CR Phase5 _{sim qdd}	30.93%	30.50%	30.50%	.00%	4.52%	4.34%	.00%	4.74%	4.61%	174
$Length_{obs}$	21.18%	20.89%	20.89%	.00%	12.77%	20.81%	.00%	13.67%	22.48%	86
% of area where cotton emerged at June the 30	50.31%	49.61%	49.61%	32.67%	39.88%	42.17%	34.26%	40.63%	42.76%	87
Sowing date _{obs}	4.55%	4.48%	4.48%	.00%	2.04%	2.07%	.00%	2.49%	2.45%	86
Calibrated on the second AEZ sample (AEZ=	2, Center)									
CR_{obs}	11.62%	11.62%	11.62%	.00%	5.85%	6.18%	.00%	6.57%	6.73%	90
Sum NDVI	24.84%	24.84%	24.84%	.00%	3.68%	10.63%	.00%	4.20%	10.41%	173
CR Phase5 _{sim qdd}	28.12%	28.86%	28.86%	.00%	11.09%	15.64%	.00%	17.85%	17.21%	173
Lengthobs	13.92%	13.92%	13.92%	.00%	5.85%	6.17%	.00%	6.57%	6.73%	90
% of area where cotton emerged at June the 30	18.99%	18.99%	18.99%	21.25%	14.89%	15.28%	21.88%	15.09%	15.22%	94
Calibrated on the third AEZ sample (AEZ=	3, South)									_
Length _{sim gdd}	5.51%	5.51%	5.51%	2.18%	2.01%	1.82%	2.43%	2.27%	2.11%	132
Lengthobs	9.53%	11.42%	11.42%	.00%	.00%	2.15%	.00%	.00%	2.52%	71

Figure: Share of the maximum risk premium reduction among different indices and samples (1991-2004) among different agro-ecological zones (AEZ).

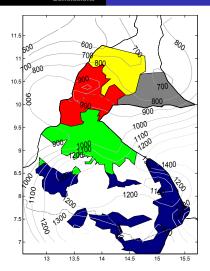


Figure: Zoning based on meteorological (annual cumulative rainfall) classification (different areas are called North: 1, North West: 2, North

Table: Rainfall zoning summary statistics

Variable	Mean	Std. Dev.	Min.	Max.	N
North					
Yield	985.385	244.393	352	1746	149
Annual cumulative rainfall (mm)	785.39	147.413	412	1174.2	149
Length _{obs}	113.065	13.239	84	140	77
Sum NDVI	5050.988	617.441	3914.5	8653.110	121
North West					
Yield	943.494	238.774	513	2241	141
Annual cumulative rainfall (mm)	821.930	162.83	464	1244	141
Length _{obs}	109.985	12.679	86	141	65
Sum NDVI	5439.067	454.6	4424.14	6546.17	116
North East					
Yield	1279.068	298.864	725	2352	207
Annual cumulative rainfall (mm)	965.877	185.685	541	1575	207
Length _{obs}	123.016	15.478	86	173	127
Sum NDVI	6772.352	591.613	5629.56	8489.08	165
Center					
Yield	1262.766	337.617	557.38	2189	197
Annual cumulative rainfall (mm)	1151.99	238.341	505.8	1790	197
Length _{obs}	129.28	14.035	92	157	100
Sum NDVI	8323.054	1935.995	4765.33	12817.25	154
South					
Yield	1181.59	279.553	594	1981	155
Annual cumulative rainfall (mm)	944.257	164.959	540	1575	155
Length _{obs}	115.876	13.523	80	143	97
CR _{sim gdd}	743.288	139.236	364.3	1087	155
Sum NDVI	5885.955	664.364	4311.75	7 587.360	119

Producer prices

		SSD			CRRA			CARA		
	$\phi = 1$	$\phi = 2$	$\phi = 3$	$\rho = 1$	$\rho = 2$	$\rho = 3$	$\psi = 1/W$	$\psi = 2/W$	$\psi = 3/W$	N
Calibrated on the first rainfall zone samp	lo		1 1 1							-
CR _{stm qdd}	42.42%	42.42%	42.42%	.00%	9.81%	10.61%	.00%	9.65%	11.26%	84
CR_{abs}	59.59%	59.59%	59.59%	.00%	.00%	6.60%	.00%	.00%	4.79%	4
Sum NDVI	27.50%	27.50%	27.50%	.00%	.00%	.00%	.00%	.00%	.00%	8
CR Phase3 _{stm qdd}	44.34%	44.34%	44.34%	.00%	.00%	10.60%	.00%	.00%	9.94%	8
CR Phase5 _{stm gdd}	45.12%	45.47%	46.60%	11.44%	18.60%	17.27%	13.95%	18.53%	17.94%	8
Lengthone	78.03%	80.98%	80.98%	.00%	18.85%	18.39%	.00%	19.29%	20.60%	4
% of area where cotton emerged at June the 30	97.42%	97.42%	97.42%	.00%	70.36%	72.13%	.00%	67.39%	70.83%	4
Calibrated on the second rainfall zone sam	ple									-
Sum NDVI	9.80%	9.80%	9.80%	.00%	.00%	.00%	.00%	.00%	.00%	8
CR Phase4stm add	32.89%	32.89%	32.89%	.00%	5.36%	5.13%	5.71%	5.71%	5.46%	8
CR Phase5 _{stm} add	40.04%	40.23%	40.23%	.00%	17.73%	16.87%	18.80%	18.80%	17.58%	8
% of area where cotton emerged at June the 30	58.45%	58.45%	58.45%	98.41%	48.38%	47.07%	51.10%	51.10%	48.52%	4
Calibrated on the third rainfall zone samp	ple			50			100			
CR Phase2 _{stm} gdd	13.02%	13.61%	13.61%	.00%	2.65%	2.46%	.00%	2.82%	2.69%	12
CR Phase4 _{stm qdd}	13.65%	13.65%	13.65%	.00%	2.65%	2.45%	.00%	2.83%	2.68%	13
Calibrated on the fourth rainfall zone sam	ple									
CR_{obs}	28.18%	30.81%	30.81%	.00%	23.36%	24.44%	.00%	27.07%	26.53%	- 4
% of area where cotton emerged at June the 30	39.72%	39.72%	41.46%	7.70%	19.88%	26.36%	8.73%	22.67%	28.83%	5
Sowing date ohe	35.97%	37.59%	37.59%	17.84%	17.80%	24.59%	19.74%	27.07%	27.01%	14
Emergence date _{obs}	34.41%	34.41%	34.41%	.00%	23.08%	23.86%	.00%	26.40%	26.03%	- 4
Lengthone	43.20%	43.20%	43.20%	10.19%	18.50%	24.26%	11.21%	26.49%	26.63%	- 4
Mean temp. in July	37.14%	37.14%	37.14%	.00%	14.36%	16.48%	.00%	12.29%	14.19%	10
Calibrated on the fifth rainfall zone samp	le						20			_
CR_{sim}	13.20%	13.20%	13.57%	.00%	5.72%	5.71%	.00%	6.30%	6.18%	8
CRotm gdd	18.44%	19.01%	19.01%	.00%	6.56%	6.27%	.00%	6.82%	6.52%	8
CR_{obs}	22.01%	22.01%	22.01%	8.16%	6.21%	5.92%	8.44%	6.34%	6.02%	4
Sum NDVI	42.49%	42.49%	42.49%	.00%	22.40%	24.29%	.00%	21.28%	22.75%	8
% of area where cotton emerged at June the 30	43.99%	43.99%	43.99%	46.30%	31.66%	31.79%	46.37%	31.69%	31.40%	4
CR Phase3 _{stm qdd}	13.63%	13.63%	32.12%	15.24%	7.24%	6.60%	15.40%	8.93%	7.73%	8
CR Phase4 _{stm gdd}	30.05%	30.06%	30.07%	11.87%	8.46%	8.11%	12.00%	8.60%	8.15%	8
Mean temp, in July	26.56%	26.56%	26,56%	18 16%	14.69%	14.27%	17.90%	14.70%	14.10%	8

Figure: Share of the maximum risk premium reduction among different indices and samples (1991-2004) among different rainfall zones.

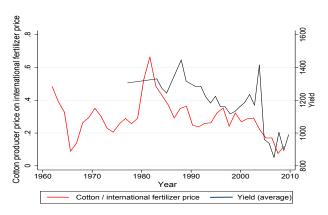
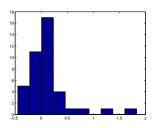
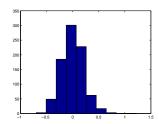
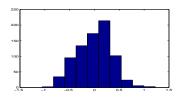





Figure: Yield and cotton producer prices in Cameroon (USD\$ per kg) on fertilizer price (USD\$ per kg). Sources: Sodecoton, Baffes (2007), Kaminsky (2011) and World Bank Commodity Price Data.

Distribution of sector-specific price and yield variations.

Prices (cotton, fertilizers) could be a great matter for cash crops.

- ▶ Prices (cotton, fertilizers) could be a great matter for cash crops.
- AEZ distinction seem necessary.

- Prices (cotton, fertilizers) could be a great matter for cash crops.
- AEZ distinction seem necessary.
- Question: what is the next step for the Cameroonian cotton sector ? (Price recovery: January 2011: A-index / fert. price = level of 2004).

- Prices (cotton, fertilizers) could be a great matter for cash crops.
- AEZ distinction seem necessary.
- Question: what is the next step for the Cameroonian cotton sector ? (Price recovery: January 2011: A-index / fert. price = level of 2004).

- Prices (cotton, fertilizers) could be a great matter for cash crops.
- AEZ distinction seem necessary.
- Question: what is the next step for the Cameroonian cotton sector ? (Price recovery: January 2011: A-index / fert. price = level of 2004).

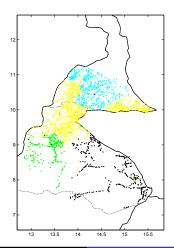

Cotton cultivars use through time

Table: Cotton cultivars average spatial and temporal allocation

Cultivars	1 st flower date	1 st boll date	Period of use
(Province)	(Days after emergence)	(Days after emergence)	
Nord			
Allen commun	61	114	untill 1976
444-2			untill 1976
Allen 333	59	111	1959-197?
BJA 592	61	114	1965-197?
IRCO 5028	61	111	untill 1987
IRMA 1243	53	102	1987 - 1998
IRMA 1239	52	101	2000-2007
IRMA A 1239	52	101	2000-2007
L 457	52	104	2008-onwards
Extrême-Nord			
IRMA L 142-9	59	109	until 1984
IRMA 96+97	55	115	1985 - 1991
IRMA BLT	51	99	1999-2002
IRMA BLT-PF	56	116	2000 - 2006
IRMA D 742	51	95	2003-2006
IRMA L 484	51	105	2007 - onward

Sources: Dessauw (2008) and Levrat (2010).

Cultivars

Producer prices

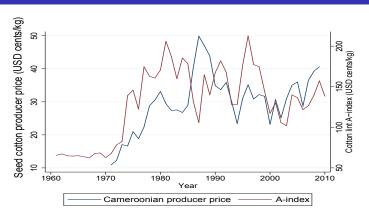


Figure: Raw seed-cotton Cameroonian producer and international lint (A-index) prices

Loteries

Table: Summary statistics

Variable	Mean	Std. Dev.	Min.	Max.	N
rho	1.095	0.711	0	1.942	64
Among which:					
rho (Dogba)	1.18	0.475	0.639	1.655	10
rho (Mo'o)	1.2	0.827	0	1.942	10
rho (Djarengol-Kodek)	1.242	0.689	0	1.768	11
rho (Bidzar)	1.179	0.884	0	1.768	9
rho (Pitoa)	0.637	0.471	0	1.768	12
rho (Djalingo)	1.198	0.803	0	1.768	12

Loteries

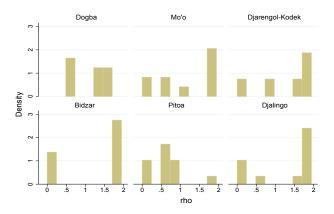


Figure: Distribution of risk aversion parameter density.

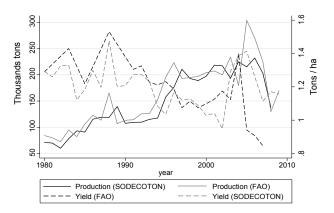


Figure: Evolution of Cameroun national seed cotton yield and production according to different sources.