Impact of the Indian part of the summer MJO on West Africa using nudged climate simulations

Elsa Mohino (1,2)

Serge Janicot (2)

Hervé Douville (3)

Laurent Z. X. Li (4)

- (1) Universidad Complutense de Madrid, Madrid, Spain
- (2) LOCEAN/IPSL, UPMC, Paris, France
- (3) Météo-France/CNRM-GAME, Toulouse, France
- (4) LMD/IPSL, UPMC, Paris, France

Mohino E, Janicot S, Douville H, Laurent L (2012) Impact of the Indian part of the summer MJO on West Africa using nudged climate simulations. *Clim Dyn* 38:2319-2334

Rationale

- *Agricultural production in West Africa depends heavily on intraseasonal rainfall variability (Gadgil & Rao 2000; Sultan et al. 2005)
- *In these time scales, there are two main periodicities of rainfall and convection (Janicot & Sultan 2001)

Rationale

- *Agricultural production in West Africa depends heavily on intraseasonal rainfall variability (Gadgil & Rao 2000; Sultan et al. 2005)
- *In these time scales, there are two main periodicities of rainfall and convection (Janicot & Sultan 2001)

Wavelet analysis of daily rainfall (1 May to 31 Oct. 1968) (Janicot & Sultan 2001)

Rationale

- *Agricultural production in West Africa depends heavily on intraseasonal rainfall variability (Gadgil & Rao 2000; Sultan et al. 2005)
- *In these time scales, there are two main periodicities of rainfall and convection (Janicot & Sultan 2001)

Wavelet analysis of daily rainfall (1 May to 31 Oct. 1968) (Janicot & Sultan 2001)

Matthews (2004): 20 days before increased convection over West Africa there was an MJO event with reduced convection over the Warm pool. Proposed a teleconnection mechanism:

Matthews (2004): 20 days before increased convection over West Africa there was an MJO event with reduced convection over the Warm pool. Proposed a teleconnection mechanism:

Matthews (2004): 20 days before increased convection over West Africa there was an MJO event with reduced convection over the Warm pool. Proposed a teleconnection mechanism:

Dry Kelvin equatorial wave

Dry Rossby equatorial wave

Meet 20 days afterwards over West Africa Matthews (2004): 20 days before increased convection over West Africa there was an MJO event with reduced convection over the Warm pool. Proposed a teleconnection mechanism:

Dry Kelvin
equatorial wave
equatorial wave

Meet 20 days afterwards over West Africa

However, Janicot et al. (2009, 2010) and Pohl et al. (2009) stressed the contribution of a convectively coupled Rossby equatorial wave

- *Study the impact of summer MJO events on West Africa
- *Analyse the mechanism for such impact

Aim

- *Study the impact of summer MJO events on West Africa
- *Analyse the mechanism for such impact

How?

By nudging the LMDZ AGCM

- *to reanalysis ERA40 (1971-2000) & ERA-Interim (2001-08)
- *T,u,v variables & strong relaxation (half hour)
- *38 summers with 1971-2008 SST climatology

Aim

- *Study the impact of summer MJO events on West Africa
- *Analyse the mechanism for such impact

How?

By nudging the LMDZ AGCM

- *to reanalysis ERA40 (1971-2000) & ERA-Interim (2001-08)
- *T,u,v variables & strong relaxation (half hour)
- *38 summers with 1971-2008 SST climatology

By analysing observations & simulations

*daily NOAA outgoing longwave radiation (OLR), ERA40 & ERA-Interim reanalysis

*using Wheeler & Hendon (2004) approach based on EEOF (standard index for monitoring & predicting MJO)

- (1) EEOF Analysis
 - *Standardized anomalies of OLR, u at 850hPa & 200hPa
 - *averaged in latitudinal band 15°S-15°N

- (1) EEOF Analysis
 - *Standardized anomalies of OLR, u at 850hPa & 200hPa
 - *averaged in latitudinal band 15°S-15°N

EEOF#1 & #2 are not independent

- (1) EEOF Analysis
 - *Standardized anomalies of OLR, u at 850hPa & 200hPa
 - *averaged in latitudinal band 15°S-15°N

EEOF#1 & #2 are not independent

(2) We use both EEOF to describe the evolution of the MJO: *Represent each day of data as a point in the two-dim. phase space given by PC1&PC2

Anticlockwise rotation (PC1 leads)

Average time between phases: 5 days. Whole cycle of 40 days

- (1) EEOF Analysis
 - *Standardized anomalies of OLR, u at 850hPa & 200hPa
 - *averaged in latitudinal band 15°S-15°N

EEOF#1 & #2 are not independent

- (2) We use both EEOF to describe the evolution of the MJO: *Represent each day of data as a point in the two-dim. phase space given by PC1&PC2
 - *Divide space in 8 phases

Anticlockwise rotation (PC1 leads)

Average time between phases: 5 days. Whole cycle of 40 days

- (1) EEOF Analysis
 - *Standardized anomalies of OLR, u at 850hPa & 200hPa
 - *averaged in latitudinal band 15°S-15°N

EEOF#1 & #2 are not independent

- (2) We use both EEOF to describe the evolution of the MJO: *Represent each day of data as a point in the two-dim. phase
 - space given by PC1&PC2
 - *Divide space in 8 phases
 - *Choose all dates in a given phase above a threshold (1.0
 - std. dev.) to build the composite

Anticlockwise rotation (PC1 leads)

Over the Indian Ocean & warm pool:

*negative OLR anomalies (increased convection) start in phase 1, grow in 2, propagate North & East in 3-5, and decay in 6 and 7

*The evolution of a decreased convection MJO event in phases 5-3

OLR Composites

Over the Indian Ocean & warm pool:

*negative OLR anomalies (increased convection) start in phase 1, grow in 2, propagate North & East in 3-5, and decay in 6 and 7

*The evolution of a decreased convection MJO event in phases 5-3

Over West Africa (WA): link between MJO & convection over WA

*max. negative (positive) OLR anomalies occur aprox. 15-20 days after main decrease (increase) of convection over Indian Ocean

*Over WA: anoms similar in magnitude, structure & timing to obs.

*Casual link between MJO & WA anoms.

4th AMMA International Conference, Toulouse 4 July 2012

Wavenumber-frequency spectra of symmetric (about equator) OLR anomalies (Wheeler & Kiladis 1999)

Observations

Wavenumber-frequency spectra of symmetric (about equator) OLR anomalies (Wheeler & Kiladis 1999)

Observations

Wavenumber-frequency spectra of symmetric (about equator) OLR anomalies (Wheeler & Kiladis 1999)
Simulations

Observations

*Good correspondence of MJO & CCE Rossby signals between obs & sim *Very weak power specta of OLR in the Kelvin wavenumber—frequency region (unlike obs)

→ The simulation suggests that the impact of summer MJO on WA convection is independent of the propagation of both dry and convectively coupled equatorial Kelvin waves

Equatorial waves Observations

Composite of OLR filtered using the boxes

MJO filtered

Composite of OLR filtered using the boxes

Observations

Kelvin filtered

*MJO signal travels all around the world and affects WA (weaker than composite of the whole field)

*Kelvin signal non significant → neglibible effect on the MJO-WA connection

WA (weaker than composite of the whole field)

*Kelvin signal non significant \rightarrow neglibible effect on the MJO-WA connection

*Rossby signal is relevant in the MJO-WA connection

*Similar conclusions from sim.

Composite of OLR filtered using the boxes

*In addition to the eastward moving MJO signal, the westward propagation of convectively coupled equatorial Rossby waves is needed to explain the overall impact of the MJO on West Africa

*Same conclusion can be obtained from the simulation composites

- *The MJO has a clear impact on WA convection: 15-20 days after the main positive (negative) convection anomalies over the equatorial Indian Ocean there is reduced (increased) convection over WA
- *The <u>causal link</u> between observed summer MJO and anomalous convection over WA has been confirmed with the model
- *In addition to the eastward moving MJO signal, the westward propagation of convectively coupled equatorial Rossby waves is needed to explain the overall impact of the MJO on West Africa
- * Dry & convectively coupled Kelvin waves seem to play no role in the impact of MJO on WA
- *Indian part of the summer MJO seems to be a key area for the impact over WA
- *Potential predictability of regional—scale anomalous convection and rainfall spells over WA at intraseasonal time scales with 15-20 days advance

Potential predictability: an example from this season

Potential predictability: an example from this season

NCAR MJO prediction for 29-23 june (courtesy of 0. Ndiage in the discussions of the AMMA working group on Intraseasonal variability and its impacts)

Potential predictability: an example from this season

Expect increased convecton over WA from June 15 onwards
Maximum convection June 20 onwards

NCAR MJO prediction for 29-23 june (courtesy of 0. Ndiage in the discussions of the AMMA working group on Intraseasonal variability and its impacts)

Conclusions Potential predictability: an example from this season

Expect increased convecton over WA from June 15 onwards
Maximum convection June 20 onwards

NCAR MJO prediction for 29-23 june (courtesy of 0. Ndiage in the discussions of the AMMA working group on Intraseasonal variability and its impacts)

Conclusions Potential predictability: an example from this season

NCAR MJO monitoring IR/Vpot 200hPa

Thanks for your attention!

Additional Material

Extended EOF (EEOFs)

Simulations

*Similar to observations with some exceptions (e.g. OLR in EEOF#1 over the West Pacific)

Observations

*EEOF#1: max. convection over West Pacific, zonal wind anomalies show baroclinic wave—like structure
*EEOF#2: min. convection over Indian Ocean; wind anomalies shifted 600 to the east

Associated PCs

*PC1 leads PC2 by 9
days → eastward
propagation of MJO
anomalies (also in
simulation)
*PCs from
observations and
simulations are highly
related

3.2

0.8

0.4

0.2

0.1

-0.1

-0.2

-0.4

8.0 -

-1.6

-3.2

Equatorial waves

Hovmöller diagram of equatorial (10°S-10°N) anomalies of OLR (contour:) & U at 850hPa (shaded)

convection anomalies

*Eastward MJO prop. in nudged region *To the west: CCER at 7m/s reaches WA *To the east: dry Kelvin at 30m/s does not reach WA → Not related to WA

*MJO eastward 7m/s

*Dry equatorial Kelvin wave 32m/s

*To the west: u850 anomalies

propagate west at 6m/s →

consistent with a convectively

coupled equatorial Rossby (CCER)

wave (not dry)

4th AMMA International Conference, Toulouse 4 July 2012